클래스 체계

변수 목록 순서

  • static public, static private, private
  • public 가 필요한 경우는 거의 없다.

함수 순서

  • 변수 목록 다음에는 공개 함수가 나온다.
  • 비공개 함수는 자신을 호출하는 공개 함수 직후에 넣는다.
  • 추상화 단계가 순차적으로 내려간다.

캡슐화

  • 변수와 유틸리티 함수는 가능한 공개하지 않는 편이 낫지만 반드시 숨겨야 하는 것은 아니다.
  • 때로는 테스트를 위해 protected로 선언해서 접근을 허용하기도 한다.
  • 하지만 비공개 상태를 유지할 온갖 방법을 강구하자. 캡슐화를 풀어주는 결정은 언제나 최후의 수단이다.

클래스는 작아야 한다!

함수가 물리적인 행 수로 크기를 측정했다면 클래스는 클래스가 맡은 책임을 센다.

너무 많은 책임
public class SuperDashboard extends JFrame implements MetaDataUser {
    public String getCustomizerLanguagePath()
    public void setSystemConfigPath(String systemConfigPath) 
    public String getSystemConfigDocument()
    public void setSystemConfigDocument(String systemConfigDocument) 
    public boolean getGuruState()
    public boolean getNoviceState()
    public boolean getOpenSourceState()
    public void showObject(MetaObject object) 
    public void showProgress(String s)
    public boolean isMetadataDirty()
    public void setIsMetadataDirty(boolean isMetadataDirty)
    public Component getLastFocusedComponent()
    public void setLastFocused(Component lastFocused)
    public void setMouseSelectState(boolean isMouseSelected) 
    public boolean isMouseSelected()
    public LanguageManager getLanguageManager()
    public Project getProject()
    public Project getFirstProject()
    public Project getLastProject()
    public String getNewProjectName()
    public void setComponentSizes(Dimension dim)
    public String getCurrentDir()
    public void setCurrentDir(String newDir)
    public void updateStatus(int dotPos, int markPos)
    public Class[] getDataBaseClasses()
    public MetadataFeeder getMetadataFeeder()
    public void addProject(Project project)
    public boolean setCurrentProject(Project project)
    public boolean removeProject(Project project)
    public MetaProjectHeader getProgramMetadata()
    public void resetDashboard()
    public Project loadProject(String fileName, String projectName)
    public void setCanSaveMetadata(boolean canSave)
    public MetaObject getSelectedObject()
    public void deselectObjects()
    public void setProject(Project project)
    public void editorAction(String actionName, ActionEvent event) 
    public void setMode(int mode)
    public FileManager getFileManager()
    public void setFileManager(FileManager fileManager)
    public ConfigManager getConfigManager()
    public void setConfigManager(ConfigManager configManager) 
    public ClassLoader getClassLoader()
    public void setClassLoader(ClassLoader classLoader)
    public Properties getProps()
    public String getUserHome()
    public String getBaseDir()
    public int getMajorVersionNumber()
    public int getMinorVersionNumber()
    public int getBuildNumber()
    public MetaObject pasting(MetaObject target, MetaObject pasted, MetaProject project)
    public void processMenuItems(MetaObject metaObject)
    public void processMenuSeparators(MetaObject metaObject) 
    public void processTabPages(MetaObject metaObject)
    public void processPlacement(MetaObject object)
    public void processCreateLayout(MetaObject object)
    public void updateDisplayLayer(MetaObject object, int layerIndex) 
    public void propertyEditedRepaint(MetaObject object)
    public void processDeleteObject(MetaObject object)
    public boolean getAttachedToDesigner()
    public void processProjectChangedState(boolean hasProjectChanged) 
    public void processObjectNameChanged(MetaObject object)
    public void runProject()
    public void setAçowDragging(boolean allowDragging) 
    public boolean allowDragging()
    public boolean isCustomizing()
    public void setTitle(String title)
    public IdeMenuBar getIdeMenuBar()
    public void showHelper(MetaObject metaObject, String propertyName) 

    // ... many non-public methods follow ...
}
충분히 작을까?
public class SuperDashboard extends JFrame implements MetaDataUser {
    public Component getLastFocusedComponent()
    public void setLastFocused(Component lastFocused)
    public int getMajorVersionNumber()
    public int getMinorVersionNumber()
    public int getBuildNumber() 
}
  • 메서드 수가 작음에도 불구하고 책임이 너무 많다.
  • 클래스 이름은 해당 클래스 책임을 기술해야 한다.
  • 클래스 이름에 Processor, Manager, Super 등과 같이 모호한 단어가 있다면 클래스에다 여러 책임을 떠안겼다는 증거다.
  • 또한 클래스 설명은 "if", "and", "or", "but"을 사용하지 않고서 25 단어 내외로 가능해야 한다.

단일 책임 원칙

  • 클래스나 모듈을 변경할 이유가 단 하나뿐이어야 한다는 원칙이다.

  • 큰 클래스 몇 개가 아니라 작은 클래스 여럿으로 이뤄진 시스템이 더 바람직하다.

  • 작은 클래스는 각자 맡은 책임이 하나며, 변경할 이유가 하나며, 다른 작은 클래스와 협력해 시스템에 필요한 동작을 수행한다.

    SuperDashboard 에서 버전 정보를 다루는 메서드를 빼서 만든 클래스
      public class Version {
          public int getMajorVersionNumber() 
          public int getMinorVersionNumber() 
          public int getBuildNumber()
      }

응집도

  • 클래스는 인스턴스 변수 수가 작아야 한다.
  • 각 클래스 메서드는 클래스 인스턴스 변수를 하나 이상 사용해야 한다.
  • 일반적으로 메서드가 변수를 더 많이 사용할 수록 메서드와 클래스는 응집도가 더 높다.
  • 응집도가 높다는 말은 클래스에 속한 메서드와 변수가 서로 의존하며 논리적인 단위로 묶인다는 의미이다.
Stack을 구현한 코드 - 응집도가 아주 높다.
public class Stack {
    private int topOfStack = 0;
    List<Integer> elements = new LinkedList<Integer>();

    public int size() { 
        return topOfStack;
    }

    public void push(int element) { 
        topOfStack++; 
        elements.add(element);
    }

    public int pop() throws PoppedWhenEmpty { 
        if (topOfStack == 0)
            throw new PoppedWhenEmpty();
        int element = elements.get(--topOfStack); 
        elements.remove(topOfStack);
        return element;
    }
}
  • size()를 제외한 다른 두 메서드는 두 변수를 모두 사용한다.
  • 함수를 작게, 매개변수 목록을 짧게라는 전략을 따르다 보면 때때로 몇몇 메서드만이 사용하는 인스턴스 변수가 아주 많아지는데 이는 새로운 클래스로 쪼개야 한다는 신호다.

응집도를 유지하면 작은 클래스 여럿이 나온다

큰 함수를 작은 함수 여럿으로 쪼개다 보면 종종 작은 클래스 여럿으로 쪼갤 기회가 생긴다.

PrimePrinter.java - 엉망진창인 클래스
package literatePrimes;

public class PrintPrimes {
    public static void main(String[] args) {
        final int M = 1000; 
        final int RR = 50;
        final int CC = 4;
        final int WW = 10;
        final int ORDMAX = 30; 
        int P[] = new int[M + 1]; 
        int PAGENUMBER;
        int PAGEOFFSET; 
        int ROWOFFSET; 
        int C;
        int J;
        int K;
        boolean JPRIME;
        int ORD;
        int SQUARE;
        int N;
        int MULT[] = new int[ORDMAX + 1];

        J = 1;
        K = 1; 
        P[1] = 2; 
        ORD = 2; 
        SQUARE = 9;

        while (K < M) { 
            do {
                J = J + 2;
                if (J == SQUARE) {
                    ORD = ORD + 1;
                    SQUARE = P[ORD] * P[ORD]; 
                    MULT[ORD - 1] = J;
                }
                N = 2;
                JPRIME = true;
                while (N < ORD && JPRIME) {
                    while (MULT[N] < J)
                        MULT[N] = MULT[N] + P[N] + P[N];
                    if (MULT[N] == J) 
                        JPRIME = false;
                    N = N + 1; 
                }
            } while (!JPRIME); 
            K = K + 1;
            P[K] = J;
        } 
        {
            PAGENUMBER = 1; 
            PAGEOFFSET = 1;
            while (PAGEOFFSET <= M) {
                System.out.println("The First " + M + " Prime Numbers --- Page " + PAGENUMBER);
                System.out.println("");
                for (ROWOFFSET = PAGEOFFSET; ROWOFFSET < PAGEOFFSET + RR; ROWOFFSET++) {
                    for (C = 0; C < CC;C++)
                        if (ROWOFFSET + C * RR <= M)
                            System.out.format("%10d", P[ROWOFFSET + C * RR]); 
                    System.out.println("");
                }
                System.out.println("\f"); PAGENUMBER = PAGENUMBER + 1; PAGEOFFSET = PAGEOFFSET + RR * CC;
            }
        }
    }
}
RowColumnPagePrinter.java
package literatePrimes;

import java.io.PrintStream;

public class RowColumnPagePrinter { 
    private int rowsPerPage;
    private int columnsPerPage; 
    private int numbersPerPage; 
    private String pageHeader; 
    private PrintStream printStream;

    public RowColumnPagePrinter(int rowsPerPage, int columnsPerPage, String pageHeader) { 
        this.rowsPerPage = rowsPerPage;
        this.columnsPerPage = columnsPerPage; 
        this.pageHeader = pageHeader;
        numbersPerPage = rowsPerPage * columnsPerPage; 
        printStream = System.out;
    }

    public void print(int data[]) { 
        int pageNumber = 1;
        for (int firstIndexOnPage = 0 ; 
            firstIndexOnPage < data.length ; 
            firstIndexOnPage += numbersPerPage) { 
            int lastIndexOnPage =  Math.min(firstIndexOnPage + numbersPerPage - 1, data.length - 1);
            printPageHeader(pageHeader, pageNumber); 
            printPage(firstIndexOnPage, lastIndexOnPage, data); 
            printStream.println("\f");
            pageNumber++;
        } 
    }

    private void printPage(int firstIndexOnPage, int lastIndexOnPage, int[] data) { 
        int firstIndexOfLastRowOnPage =
        firstIndexOnPage + rowsPerPage - 1;
        for (int firstIndexInRow = firstIndexOnPage ; 
            firstIndexInRow <= firstIndexOfLastRowOnPage ;
            firstIndexInRow++) { 
            printRow(firstIndexInRow, lastIndexOnPage, data); 
            printStream.println("");
        } 
    }

    private void printRow(int firstIndexInRow, int lastIndexOnPage, int[] data) {
        for (int column = 0; column < columnsPerPage; column++) {
            int index = firstIndexInRow + column * rowsPerPage; 
            if (index <= lastIndexOnPage)
                printStream.format("%10d", data[index]); 
        }
    }

    private void printPageHeader(String pageHeader, int pageNumber) {
        printStream.println(pageHeader + " --- Page " + pageNumber);
        printStream.println(""); 
    }

    public void setOutput(PrintStream printStream) { 
        this.printStream = printStream;
    } 
}
  • 위 클래스는 숫자 목록을 주어진 행과 열에 맞춰 페이지에 출력하는 방법을 안다.
PrimeGenerator.java
package literatePrimes;

import java.util.ArrayList;

public class PrimeGenerator {
    private static int[] primes;
    private static ArrayList<Integer> multiplesOfPrimeFactors;

    protected static int[] generate(int n) {
        primes = new int[n];
        multiplesOfPrimeFactors = new ArrayList<Integer>(); 
        set2AsFirstPrime(); 
        checkOddNumbersForSubsequentPrimes();
        return primes; 
    }

    private static void set2AsFirstPrime() { 
        primes[0] = 2; 
        multiplesOfPrimeFactors.add(2);
    }

    private static void checkOddNumbersForSubsequentPrimes() { 
        int primeIndex = 1;
        for (int candidate = 3 ; primeIndex < primes.length ; candidate += 2) { 
            if (isPrime(candidate))
                primes[primeIndex++] = candidate; 
        }
    }

    private static boolean isPrime(int candidate) {
        if (isLeastRelevantMultipleOfNextLargerPrimeFactor(candidate)) {
            multiplesOfPrimeFactors.add(candidate);
            return false; 
        }
        return isNotMultipleOfAnyPreviousPrimeFactor(candidate); 
    }

    private static boolean isLeastRelevantMultipleOfNextLargerPrimeFactor(int candidate) {
        int nextLargerPrimeFactor = primes[multiplesOfPrimeFactors.size()];
        int leastRelevantMultiple = nextLargerPrimeFactor * nextLargerPrimeFactor; 
        return candidate == leastRelevantMultiple;
    }

    private static boolean isNotMultipleOfAnyPreviousPrimeFactor(int candidate) {
        for (int n = 1; n < multiplesOfPrimeFactors.size(); n++) {
            if (isMultipleOfNthPrimeFactor(candidate, n)) 
                return false;
        }
        return true; 
    }

    private static boolean isMultipleOfNthPrimeFactor(int candidate, int n) {
        return candidate == smallestOddNthMultipleNotLessThanCandidate(candidate, n);
    }

    private static int smallestOddNthMultipleNotLessThanCandidate(int candidate, int n) {
        int multiple = multiplesOfPrimeFactors.get(n); 
        while (multiple < candidate)
            multiple += 2 * primes[n]; 
        multiplesOfPrimeFactors.set(n, multiple); 
        return multiple;
    } 
}
  • 위 클래스는 소수 목록을 생성하는 방법을 안다.
  • 코드를 보면 알겠지만, 객체로 인스턴스화하는 클래스가 아니다.
  • 단순히 변수를 선언하고 감추려고 사용하는 유용한 공간일 뿐이다.

가장 먼저, 원래 프로그램의 정확한 동작을 검증하는 테스트 슈트를 작성하라.

그 다음 한 번에 하나씩 수 차례에 걸쳐 조금씩 코드를 변경하라.

코드를 변경할 때마다 테스트를 수행해 원래 프로그램과 동일하게 동작하는지 확인하라.

변경하기 쉬운 클래스

대다수 시스템은 지속적인 변경이 가해진다. 그리고 뭔가 변경할 때마다 시스템이 의도대로 동작하지 않을 위험이 따른다.

깨끗한 시스템은 클래스를 체계적으로 정리해 변경에 수반하는 위험을 낮춘다.

변경이 필요해 '손대야'하는 클래스
public class Sql {
    public Sql(String table, Column[] columns)
    public String create()
    public String insert(Object[] fields)
    public String selectAll()
    public String findByKey(String keyColumn, String keyValue)
    public String select(Column column, String pattern)
    public String select(Criteria criteria)
    public String preparedInsert()
    private String columnList(Column[] columns)
    private String valuesList(Object[] fields, final Column[] columns) private String selectWithCriteria(String criteria)
    private String placeholderList(Column[] columns)
}
  • 주어진 메타 자료로 적절한 SQL 문자열을 만드는 Sql 클래스이다.
  • 새로운 SQL 문을 지원하거나 기존 SQL 문 하나를 수정할 때 반드시 Sql 클래스에 손대야 한다.
  • SRP를 위반한다.
  • 저자의 경험에 의하면 클래스 일부에서만 사용되는 비공개 메서드는 코드를 개선할 잠재적인 여지를 시사한다. 하지만 실제로 개선에 뛰어드는 계기는 시스템이 변해서라야 한다.
닫힌 클래스 집합
abstract public class Sql {
    public Sql(String table, Column[] columns) 
    abstract public String generate();
}
public class CreateSql extends Sql {
    public CreateSql(String table, Column[] columns) 
    @Override public String generate()
}

public class SelectSql extends Sql {
    public SelectSql(String table, Column[] columns) 
    @Override public String generate()
}

public class InsertSql extends Sql {
    public InsertSql(String table, Column[] columns, Object[] fields) 
    @Override public String generate()
    private String valuesList(Object[] fields, final Column[] columns)
}

public class SelectWithCriteriaSql extends Sql { 
    public SelectWithCriteriaSql(
    String table, Column[] columns, Criteria criteria) 
    @Override public String generate()
}

public class SelectWithMatchSql extends Sql { 
    public SelectWithMatchSql(String table, Column[] columns, Column column, String pattern) 
    @Override public String generate()
}

public class FindByKeySql extends Sql public FindByKeySql(
    String table, Column[] columns, String keyColumn, String keyValue) 
    @Override public String generate()
}

public class PreparedInsertSql extends Sql {
    public PreparedInsertSql(String table, Column[] columns) 
    @Override public String generate() {
    private String placeholderList(Column[] columns)
}

public class Where {
    public Where(String criteria) public String generate()
}

public class ColumnList {
    public ColumnList(Column[] columns) public String generate()
}
  • 공개 인터페이스를 각각 Sql 클래스에서 파생하는 클래스로 만들었다.
  • valueList와 같은 비공개 메서드는 해당하는 파생 클래스로 옮겼다.
  • 모든 파생 클래스가 공통으로 사용하는 비공개 메서드는 Where와 ColumnList라는 두 유틸리티 클래스에 넣었다.
  • 이제 update 문을 추가할 때 기존 클래스를 변경할 필요가 없다.
    • Sql 클래스에서 새 클래스 UpdateSql을 상속받아 거기에 넣으면 된다.

이상적인 시스템이라면 새 기능을 추가할 때 시스템을 확장할 뿐 기존 코드를 변경하지는 않는다.

변경으로부터 격리

  • 상세한 구현에 의존하는 클라이언트 클래스는 구현이 바뀌면 위험에 빠진다.
  • 그래서 우리는 인터페이스와 추상 클래스를 사용해 구현이 미치는 영향을 격리한다.
  • 상세한 구현에 의존하는 코드는 테스트가 어렵다.

예를 들어, Portfolio 클래스를 만든다고 가정하자. 그런데 Portfolio 클래스는 외부 TokyoStockExchange API를 사용해 포트폴리오 값을 계산한다. 따라서 우리 테스트 코드는 시세 변화에 영향을 받는다.

Portfolio 클래스에서 TokyoStockExchange API를 직접 호출하는 대신 StockExchange라는 인터페이스를 생성한 후 메서드 하나를 선언한다.

public interface StockExchange { 
    Money currentPrice(String symbol);
}

다음으로 StockExchange 인터페이스를 구현하는 TokyoStockExchange 클래스를 구현한다.

또한 Portfolio 생성자를 수정해 StockExchange 참조자를 인수로 받는다.

public Portfolio {
    private StockExchange exchange;
    public Portfolio(StockExchange exchange) {
        this.exchange = exchange; 
    }
    // ... 
}

이제 TokyoStockExchange 클래스를 흉내내는 테스트용 클래스를 만들 수 있다.

테스트용 클래스는 StockExchange 인터페이스를 구현하며 고정된 주가를 반환한다.

public class PortfolioTest {
    private FixedStockExchangeStub exchange;
    private Portfolio portfolio;

    @Before
    protected void setUp() throws Exception {
        exchange = new FixedStockExchangeStub(); 
        exchange.fix("MSFT", 100);
        portfolio = new Portfolio(exchange);
    }

    @Test
    public void GivenFiveMSFTTotalShouldBe500() throws Exception {
        portfolio.add(5, "MSFT");
        Assert.assertEquals(500, portfolio.value()); 
    }
}

StockExchange 인터페이스는 주식 기호를 받아 현재 주식 가격을 반환한다는 추상적인 개념을 표현한다.

이와 같은 추상화로 실제로 주가를 얻어오는 출처나 얻어오는 방식 등과 같은 구체적인 사실을 모두 숨긴다.

'Clean Code' 카테고리의 다른 글

[Clean Code] 창발성  (0) 2020.09.03
[Clean Code] 시스템  (0) 2020.09.03
[Clean Code] 단위 테스트  (0) 2020.09.03
[Clean Code] 경계  (0) 2020.09.03
[Clean Code] 오류 처리  (0) 2020.09.03

+ 따끈한 최근 게시물